Insect Structure and Function

PG1

Dr. Chandrik Malakar Suri Vidyasagar College

The Taxonomic Hierarchy is:

Kingdom ---- Animal

Phylum ---- Arthropoda

Class ---- Insecta

Order ---- Coleoptera

Family
Genus
Species

All Arthropods Have Several Common Structural Characteristics:

1) A chitinous exoskeleton

The suit of armor of this knight is somewhat analogous to the insect exoskeleton

All arthropods have:

2) Bilateral Symmetry

All arthropods have:

3) Jointed Appendages

All arthropods have:

4) Segmented Bodies

"Just look at this room—body segments everywhere!"

All arthropods also have:

- •A tubular digestive tract
- •A dorsal tubular circulatory system
- •A ventral nervous system

All arthropods also have:

- •A tubular digestive tract
- •A dorsal tubular circulatory system
- •A ventral nervous system

Chelicerata include some members important to foresters, including

Scorpions, spiders, and ticks.

Class Arachnida

Characteristics of Chelicerata include:

•All those of general arthropods

and

- •2 body regions
- •No antennae
- •4 pair of walking legs

Mandibulata include:

Lobsters – Class Crustacea

Centipedes –

Class Chilopoda

Millipedes – Class Dipl

Mandibulata also include: The Class Insecta:

Why Study?

- An understanding of the external structure of the insect is necessary...
 - to allow the identification of insects and other arthropods
 - to understand their biology and control

Insects within the Class Insecta have all the characteristics of Arthropods

•3 body regions

Head Thorax Abdomen

Insects also have:

•3 pairs of legs (not two in spite of what you may see in some movies)

•1 pair of antennae

Tagmata

Exoskeleton

Outer layer or "skin"

- Functions:
 - Protection of soft parts
 - Muscle attachment
 - Support
 - Site for sensory organs
 - Helps prevent desiccation
 - Reduces pathogen entry

Components of the Exoskeleton

Cuticlenon-living

- Epidermis
 - living
 - secretes the cuticle
- Basement membrane
 - non-living
 - function not known

Cuticle

- Key contributor to the success of insects
 - barrier between living tissue/environment
 - restriction of water loss
 - abrasion protection

Body Structure

3 body regions

- 1 pair of antennae
- 3 pair of legs on the thorax

Head

- Functions:
 - Mouthparts (feeding appendages)
 - Sensory organs (interaction with nature)
 - photoreceptors/vision
 - receptors on antennae
 - Houses the brain

Antennae

- Single pair
- Located between and in front of eyes
- Sensory function
 - touch
 - smell
 - humidity
 - sound

Antennae

• Types

Vision

Compound eyesmain organ of vision

- Composed of individual units ommatidia
 - each registers a portion of a mosaic image
 - number vary (>25,000 for dragonflies)
 - surface of eye is protected with a cuticle
- Resolution of image varies
 - dragonfly: several meters away
 - other insects: only a meter or so away

How do insects perceive the world?

- Many can see color (but many blind to red)
- Others see colors we can not Ultraviolet
- Some only detect degrees of light and no image
- Others are totally blind

Nectar Guides

- Many insect-pollinated flowers have nectar guides
- Serve as visual guides to direct insects to nectar source
- Nectar guides absorb UV light
- Rest of flower reflects UV light

Mouthparts

- Basic types:
 - chewing

- sponging
- piercing-sucking
 - siphoning
- rasping-sucking
- chewing-lapping
- Important for insect identification
- Provides information on feeding habits and types of damage

Chewing Type

- Simplest type
- Used to chew holes in leaves, bore in stems
- Examples: grasshoppers, crickets, caterpillars, beetles

Piercing-Sucking Type

- Common and important type
- Greatly modified for puncturing plants and animals

- Mouthpart components form needle-like stylets
- Capable of transmitting viruses
- Toxic saliva
- Examples: mosquitoes, stink bugs, etc.

Rasping-Sucking Type

- Combination of chewing and piercing-sucking
- Rasp (scrap) surfaces of leave, suck up sap
- Example: thrips

Sponging Type

- Modified for liquids or solid foods
 - solid foods must be dissolved by salivary secretions
- Example: house fly

Siphoning Type

- Mouthparts form a sucking tube (proboscis)
 - modified for uptake of nectar/liquids
- Coiled beneath head when not in use
- Examples: butterflies and moths

Chewing-Lapping Type

- Modified to use liquid or semi-liquid foods
- Some mouthpart components function for chewing
 - mold wax
 - grasping prey
 - cutting flowers
- Other components form the proboscis
 - 'lapping' surface
- Examples: honey bee, bumble bee

The **Thorax** consists of three segments:

- 1) Prothorax
- 2) Mesothorax
- 3) Metathorax

Thorax

- Divided into 3 regions
 - prothorax
 - mesothorax
 - metathorax
- Main function: locomotion
 - walking/running
 - jumping
 - swimming
 - flying

Legs

- Three pairs of true legs
- 6 basic segments of the leg
 - coxa
 - trochanter
 - femur
 - tibia
 - tarsus
 - pretarsus

Adapted for various functions

Types of Legs

• Cursorial – running

• Fossorial – digging

Raptorial – predaceous

• Saltatorial – jumping

Natatorial - swimming

Wings

- Number of wings varies by species
 - 2 pairs
 - 1 pair on the mesothorax
 - absent
- Functions
 - locomotion
 - protection
 - camaflouge

Types of Wings

- Membranous
- Elytra hardened, front wings that serve as protective covers for membranous hind wings
- Hemelytra front wings that are leathery or parchment-like at the base and membranous near the tip
- Halteres small, club-like hind wings that serve as gyroscopic stabilizers during flight
- Scales
- Tegmina front wings that are completely leathery or parchment-like in texture

Abdomen

- Functions:
 - respiration
 - excretion
 - reproduction

Abdomen

- Spiracles
 - openings involved in respiration
 - located on each side of abdomen

- Cerci
 - sensory organs

- Ovipositor
 - egg-laying structure
 - stingers (modified ovipositor found in some females)

Chandrik Malakar

That's All!!!

